Study of Variations of Musculo Cutaneous Nerve in Relation to the Coraco Brachialis Muscle

S. K. Vanisree¹, Ch. Jayamma², V. Saila Kumari³, Raju Sugavasi⁴

ABSTRACT

Introduction: The muscles of upper limb are supplied by branches of brachial plexus. Musculocutaneous nerve has common variations in relation to its connection with the median nerve and coracobrachialis muscle, it may be run behind the coracobrachialis muscle or stick on it. Study was undertaken to find out the pattern of communication between musculo cutaneous and median nerve in relation to coracobrachialis muscle in the anterior compartment of arm.

Material and Methods: 60 superior extremities were used to see the present variation in Kurnool Medical College, Kurnool, Andhra Pradesh, India. Dissection of upper limbs for present study was followed by standard dissection manuals and procedures on the formalin fixed cadavers.

Results: Anomalous Communication between median nerve and musculocutaneous nerve were observed in 15 limbs and the incidence was Type I: 6.66%, Type II: 18.3% and Type III: 0% and total of 25%.

Conclusion: Anatomical knowledge of such possible variations has great clinical significance for the physicians and surgeons.

Keywords: Communication, Coracobrachialis, Musculocutaneous nerve

INTRODUCTION

Musculocutaneous nerve (MCN) is derived from the C₅, C₆, C₇ roots of lateral cord of brachial plexus and pierces the coracobrachialis muscle. It supplies the muscle even before piercing it. MCN supplies both heads of the biceps brachii and medial major part of brachialis. Just below the elbow it pierces the deep fascia and extends downwards as the lateral cutaneous nerve of the forearm. Median nerve (MN) derived from 2 roots, The lateral root is the continuation of lateral cord fibres and conveys the fibres from (C₅, C₆, C₇) and medial root is derived from medial cord, carries fibres from (C₆, T₁) and joins the lateral root after crossing in front of third part of axillary artery. Variations in the formation and branching pattern of brachial plexus are common and have been reported by several investigators, but communications are rare and may leads to complications. In some cases the musculocutaneous nerve does not even pierce the coracobrachialis muscle and passes into forearm for further supply.

MATERIAL AND METHODS

The present study was conducted on upper limbs of 30 cadavers at Department of anatomy, Kurnool government medical college, Kurnool, Andhra Pradesh, South India after obtaining proper consent from cadavers relatives. 60 upper limbs were dissected meticulously and exposed anterior compartment of arm to see the communications in related to the coraco brachialis muscle according to the guidelines described by Romanes, Cunnighams manual of practical anatomy book. Incision was given along the midline of arm and reflected skin, superficial fascia, deep fascia then retracted biceps brachii muscle laterally and noticed the communication pattern of musculo cutaneous nerve and median nerve related to coraco brachialis by normal observation method.

STATISTICAL ANALYSIS

Descriptive statistics like mean and percentages were used to interpret the data with the help of Microsoft Excel 2007.

RESULTS

Total of 60 superior extremities were dissected and observed, the results are follows. Communication between median nerve and musculocutaneous nerve were observed in 15 limbs out of 60 cases. 4 cases communication was observed proximal to the entry of musculotaneous nerve into coracobrachialis and incidence was 6.66% (Figure-1), 11 cases it was distal to the exit of musculotaneous nerve from coracobrachialis and incidence was 18.3% (Figure-2). Musculocutaneous nerve does not pierce coracobrachialis directly or through its branches in a single case and incidence was 0% (Figure-3). Incidence of present study was calculated by normal observational method.

DISCUSSION

According to Venierators and Anagnostopoulou¹ communication between median nerve and musculocutaneous nerve was classified as 3 types, Type I: communication proximal to the entry of musculotaneous nerve into coracobrachialis, Type II: communication distal to the exit of musculotaneous nerve from coracobrachialis. Type III: musculocutaneous nerve does not pierce coracobrachialis directly or through its branches but ran alongside of the muscle and exhibited a communication between it and median nerve. Incidence of communications between median nerve and musculocutaneous nerve was reported by previous authors as follows, kosugi mortra and yamashita et al (1986) 21.8%,² Loukas and Aqueelah et al (2005) 63.5%,³ choi.et.al (2002) 23.6%.⁴ According to Iwamoto et al,⁵ the communicating branch between the median and the musculocutaneous nerve, consisted of fibres arising from C₅

¹Assistant Professor, ²Associate Professor, ³Professor, Department of Anatomy, Kurnool medical college, Kurnool, ⁴Assistant Professor, Department of Anatomy, Fathima Institute of Medical Sciences (FIMS) Kadapa, Andhra Pradesh, India

Corresponding author: Raju Sugavasi, BPT, M.Sc Medical Anatomy, Assistant Professor, Department of Anatomy, Fathima Institute of Medical Sciences (FIMS) Kadapa, Andhra Pradesh, PIN: 516001, India.

How to cite this article: S. K. Vanisree, Ch. Jayamma, V. Saila Kumari, Raju Sugavasi. Study of variations of musculo cutaneous nerve in relation to the coraco brachialis muscle. International Journal of Contemporary Medical Research 2016;3(10):2863-2865.
and C6.

Total incidence in Present study was 25%, which co relates with the study of choi et al. Sharadkumar Pralhad Sawant et al (2012) saw this variation in 30 cases out of 100 specimens. Chauhan et al in 2001 found phylogeny and the development of the nerves of the upper limb, for the interpretation of the nerve anomalies of the arm. Chiarapattanakom et al (1998) suggested the reason that, limb muscles develop from the mesenchyme of local origin, while axons of spinal nerves grow distally to reach the muscles and or skin. They blamed the lack of coordination between the formation of the limb muscles and their innervations for appearance of a communicating branch. The musculocutaneous nerve may be damaged un expectedly in flap dissections of upper limbs.

CONCLUSION
An injury to the musculocutaneous nerve proximal to the communication branch may lead to unpredicted appearance of weakness of forearm flexors and thenar muscles. These communications may be responsible for entrapment syndromes of musculocutaneous nerve which is a part of median nerve also passes through the coraco brachialis muscle exhibiting signs and symptoms to those seen in median nerve neuropathy. This kind of variations may be more valuable in traumatology of shoulder joint.

ACKNOWLEDGEMENTS
The present authors are grateful to previous publishers, editors of all those articles, journals and books from where the present literature has gathered.

REFERENCES


Source of Support: Nil; Conflict of Interest: None
Submitted: 21-08-2016; Published online: 04-10-2016