Myroides: An Emerging Pathogen Causing Urinary Tract Infections in Hospitalized Patients

Mohit Agrawal¹, Ved Prakash Mamoria², Sonali Mittal³, Ayushi Sharma⁴

ABSTRACT

Introduction: The genus Myroides comprises of Gram-negative, non-motile, and non-fermenting bacteria. It is a rare opportunistic pathogen but many recent case reports, however, underscore the pathogenic potential that Myroides spp. possesses for humans. Immunocompromised patients are at higher risk for Myroides infection. Diabetes, catheterization and ICU stay may increase the chances of acquiring Myroides infection.

Material and Methods: Urine specimens collected from inpatients were cultured as per standards. Myroides spp. were identified and sensitivity was performed on VITEK® 2 Compact™.

Results: A total of 16 Myroides spp. isolates were obtained in the study period. All the isolates were from catheterized patients residing in intensive care units. Eleven (69%) patients were suffering from diabetes mellitus. Extensive resistance was seen in antibiotic sensitivity results. Minocycline was 100% sensitive.

Conclusion: Myroides spp. should be considered among pathogens in hospitalized, catheterized patients. They could be extremely drug resistant. Minocycline is a useful antibiotic while treating UTI caused by Myroides spp.

Keywords: Catheterized, Diabetes, ICU, Minocycline, Myroides, Non-fermenter, Urinary Tract Infection.

INTRODUCTION

The Myroides spp. are ubiquitously present as environmental bacterial organisms.¹ In the past, they were not considered pathogenic but despite of their low virulence, now a days increasing number of cases are being reported in literature. The traditional epidemiology of Myroides spp. involves infection of an immunocompromised host. The organism has been reported in cases of urinary tract infection,² endocarditis,³ ventriculitis,⁴ cutaneous infections,⁵ pneumonia,⁶ catheter-associated bacteraemia,⁷ and soft tissue infections,⁸ typically in severely immunocompromised patients, although rare severe infections also occur in immunocompetent hosts.³ Myroides belong to family Flavobacteriaceae. Members of the genus Myroides were initially isolated from human intestine in 1923 by Stutzer and named as Bacterium faecale aromaticum.¹⁰ Later in 1929 they were named as Flavobacterium odoratum.¹¹ An extensive polyphasic taxonomic analysis of 19 strains of F. odoratum in 1996 led to the establishment of the genus Myroides which included two species, M. odoratimus and M. odoratus.¹² The genus differs from Flavobacterium species by its lack of gliding motility, its ability to grow well at 37°C, its salt tolerance, and differences in its fatty acid composition. The characteristics of being nonsaccharolytic and indole-negative differentiate Myroides odoratus from Elizabethkingia meningoseptica and other similar medically important organisms. Genus Myroides gets its name from Greek word Myron, and it literally means resembling perfume. They are Gram-negative rods and cells are thin, middle sized (0.5 µm in diameter and 1–2 µm long) but longer rods and long chains (containing four to ten cells) may occur in broth medium. They are strict aerobes. They show good growth on nutrient agar and MacConkey agar. They are non hemolytic on blood agar. They can be salt tolerant up to 5% of NaCl. Myroides form yellow pigmented colonies on culture due to the presence of flexirubin pigment. These colonies emit a characteristic fruity odour, similar to Alcaligenes faecalis. However Myroides can be differentiated from A. faecalis on the basis of absence of nitrate reductase and colistin resistance.

Myroides genus includes five species: Myroides odoratus, Myroides odoratimus, Myroides pelagicus¹³, Myroides profundii¹⁴ and Myroides marinus.¹⁵ While first two species are recovered from human clinical specimens, last three are found in sea water. M. odoratus can be differentiated from M. odoratimus by its susceptibility to desferrioxamine. As infections with Myroides spp. are being reported as individual case reports more frequently, we thought it was an opportune time to look at antimicrobial agents and their in vitro effectiveness against a number of clinical isolates. Present study was conducted to find out the occurrence and susceptibility of Myroides spp. in urine specimens of hospitalized patients.

MATERIAL AND METHODS

Urine specimens (mid-stream and catheter catch) collected from inpatients attending Mahatma Gandhi Hospital, Jaipur

¹Associate Professor, Department of Microbiology, Mahatma Gandhi Medical College, Jaipur, ²Professor and Head, Department of Microbiology, Mahatma Gandhi Medical College, Jaipur, ³Resident, Department of Microbiology, Mahatma Gandhi Medical College, Jaipur, ⁴Postgraduate student, Department of Microbiology, Mahatma Gandhi Medical College, Jaipur, India

Corresponding author: Dr. Ved Prakash Mamoria; Professor and Head, Department of Microbiology, Mahatma Gandhi Medical College, Jaipur, India

DOI: http://dx.doi.org/10.21276/ijcmr.2019.6.11.28
and sent to Department of Microbiology for culture and sensitivity test and showing growth of *Myroides spp.* from October 2018 to September 2019 were included in this study. A semi quantitative method was taken on for the primary isolation of organisms by using a calibrated loop with diameter of 4 mm, delivering 0.01 ml of urine. Specimens were then cultured on Blood agar and MacConkey agar media plates and incubated at 37 overnight. Culture on blood agar revealed 2-3 mm round, convex, smooth, yellowish colonies. Gram stain showed gram negative bacilli. The organism was non-motile, indole negative, oxidase and catalase positive. 20% KOH test was also positive. Specimens with a colony count of ≥10^5 cfu/ml were considered with significant count of ≥10^2 cfu/ml. These patients were from different intensive care units of hospital. All of these patients were catheterized and specimens were obtained from catheter port. Antimicrobial susceptibility is shown in table 1,2.

DISCUSSION

Myroides spp. are suggested to affect hosts with immunocompromised status like liver cirrhosis, end stage renal disease, diabetes mellitus, and chronic obstructive pulmonary disease.\(^{17-19}\) Cases of *Myroides spp.* causing UTI have been reported in patients with chronic nephritis, urinary retention, urinary calculi, and diabetes mellitus.\(^{20-21}\) *Myroides spp.* grow well in high concentrations of glucose, and in our study we found that diabetes was a comorbidity in several cases. In present study out of 16, eleven (69%) patients were suffering from diabetes mellitus. An association of diabetes and UTI was also reported by Solanki et al.\(^\text{22}\) where 54% cases of *Myroides UTI* had diabetes mellitus.\(^\text{21}\) Eight (73%) out of these eleven patients were long standing diabetics. Verma et al. in their study reported 100% patients were long standing diabetics.\(^\text{21}\)

Another risk factor could be presence of Foley’s catheter.\(^\text{23}\) It is possibly because of the strong tendency of *Myroides spp.* to form biofilms.\(^\text{24}\) *Myroides spp.* display strong adherence profiles, with a preference for adherence at lower temperatures.\(^\text{25}\) Their ubiquitous presence and their ability of autoaggregation and coaggregation leading to biofilm formation might explain their ability to infect debilitated or immunosuppressed hosts where presence of urinary catheters is very common.\(^\text{26,27}\) In our study all the 16 patients were catheterized. Chen et al. reported 82% of their cases were catheterized.\(^\text{27}\)

The treatment of *Myroides spp.* is difficult due to extensive antibiotic resistance. They have been reported resistant to beta lactams, fluoroquinolones, aminoglycosides and sulfamethoxazole.\(^\text{3}\) *M. odoratum* produce a chromosomally mediated non-inducible metallo-beta-lactamase which is capable of hydrolysing cephamycins, penicillins, cephalosporins, aztreonam, imipenem, and meropenem.\(^\text{28}\)

There are various susceptibility patterns seen in different studies due to the lack of standards provided by CLSI. There are many studies which performed antimicrobial susceptibility testing by disk diffusion also, though which is not provided any direct standards for *Myroides*, we used criteria suggested by CLSI for non-enterobacteriaceae non-fastidious, glucose-nonfermenting, Gram-negative bacilli.\(^\text{16}\)

RESULTS

A total of 16 *Myroides spp.* isolates were isolated in the study duration. In all 16 instances they were isolated with significant count of ≥10^5 cfu/ml. These patients were from different intensive care units of hospital. All of these patients were catheterized and specimens were obtained from catheter port. Antimicrobial susceptibility is shown in table 1,2.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Sensitive Isolates (%)</th>
<th>Intermediate Isolates (%)</th>
<th>Resistant Isolates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Cefoperazone/Sulbactam</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Cefepime</td>
<td>0 (0%)</td>
<td>1 (6.25%)</td>
<td>15 (93.75%)</td>
</tr>
<tr>
<td>Imipenem</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Amikacin</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Minocycline</td>
<td>16 (100%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Co-trimoxazole</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>Colistin</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>16 (100%)</td>
</tr>
</tbody>
</table>

Table 1: Antimicrobial susceptibility result

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>11 (69%)</td>
</tr>
<tr>
<td>Foley’s catheter</td>
<td>16 (100%)</td>
</tr>
<tr>
<td>ICU stay</td>
<td>16 (100%)</td>
</tr>
</tbody>
</table>

Table 2: Distribution of comorbidities

And in our study we found that diabetes was a comorbidity in several cases. In present study out of 16, eleven (69%) patients were suffering from diabetes mellitus.
Minocycline can be a useful antibiotic in. reported 100% sensitivity against Only one isolate
As Vitek® 2, we found all isolates resistant to both these antibiotics. In quinolones moxifloxacin has been suggested
as better alternative than other quinolones. As Vitek® 2 compact does not test for moxifloxacin we could not verify it. However all the isolates were resistant to ciprofloxacin and levofloxacin. Chen et al. reported 100% sensitivity against co-trimoxazole but in our study we found it completely resistant.

CONCLUSION
Although Myroides spp. are uncommon pathogens, clinicians should be aware of its ability to cause UTI especially in the immunocompromised population. Empirical therapy is usually ineffective due to the multidrug resistance found in Myroides spp. Minocycline can be a useful antibiotic in successful treatment of such patients. We also insist that further studies are required to understand this emerging pathogen.

REFERENCES
10. Stutzer, M. J. Zur Frage U’ber die Fa’unisbakterien im Darm. Zentralbl Bakteriol Parasiendk Infektionskr Hyg Abt 1 Orig. 1923;91, 87–90.
23. Spanik, S., Trupl, J., Krcmery, V. Nosocomial catheter associated Flavobacterium odoratum bacteremia in

Source of Support: Nil; Conflict of Interest: None
Submitted: 18-10-2019; Accepted: 30-10-2019; Published: 24-11-2019