Biofilm Formation among Various Candida Species and its Role in Antifungal Resistance at Tertiary Care Centre, Jhalawar

Rajesh Bansal1, Yogendra Kumar Tiwari2, Vasudev Patidar3

ABSTRACT

Introduction: Serious fungal infections particularly Candida infection have increased in recent years. It is as a consequence of increased immunosuppression associated with HIV infection, organ and tissue transplant and aggressive treatment for neoplastic and autoimmune diseases. Study aimed to investigate biofilm formation among candida species isolated from various clinical samples and its role in antifungal resistance.

Material and methods: A retrospective observational study was conducted from October 2017 to January 2019 in the Department of Microbiology, Jhalawar Medical College, Jhalawar. A total of 630 samples with suspected Candida infections were collected and processed. A total of 313 Candida isolates from various clinical samples were taken up for the study. Samples were processed by Gram staining, KOH mount and culture on SDA and BHI agar. Isolated yeasts were identified and speciated by germ tube test, chlamydospores formation on corn meal agar, color production on CHROM agar, sugar fermentation test and sugar assimilation test. Biofilm production was tested by Tube method and Tissue culture plate method. Antifungal susceptibility testing of isolates was performed as per CLSI guidelines.

Results: A total of 313 samples out 630 samples were positive for candida infections. Out of 313 isolates, 157 (50.16%) were found to be biofilm producers. Candida tropicalis (52.86%) was most common Candida species to be isolated as biofilm producer followed by C. Parapsilosis (10.19%), C. glabrata (10.19%) and C. krusei (4.45%) while C. albicans was 35/157 (22.29%). Antifungal resistant was found to be more in biofilm producer and tissue culture plate method was found to be more sensitive than tube method for biofilm detection.

Conclusion: There is increasing trend of antifungal resistance among candida isolates particularly in Non Albicans Candida species. So, it is necessary to identify all yeast isolates up to species level and their potential for biofilm formation as it is one of the major virulence factors responsible for antifungal resistance. This will be helpful for efficient treatment, prevention of development of antifungal resistance and finally, the reduction of the treatment costs.

Key words: Candida Species, Biofilm, Antifungal Resistance.

INTRODUCTION

Candida infections have emerged as important public health problems with significant morbidity and mortality. The growing number of immunocompromised individuals as a result of the HIV pandemic and the use of long-term immunosuppressive therapy in cancer and organ transplant patients have favoured the increased incidence of Non albicans Candida species among hospitalized and immunosuppressed patients. Biofilm is one of the known virulence factors of Candida, an important pathogen and commensal. Microorganisms growing in a biofilm are associated with chronic and recurrent human infections and are highly resistant to antimicrobial agents. Early detection of biofilm production may be useful for clinical decision because of its suggestive property for potential pathogenic capacity of Candida isolates.

Biofilms are defined as microbial derived sessile communities characterized by the cells that are irreversibly attached to a substratum or to each other. They are embedded in a matrix of extracellular polymeric substances (EPS) they have produced and exhibit an altered phenotype with respect to growth rate and gene transcription. Within a biofilm, microorganisms communicate with each other by production of chemotactic particles or pheromones, a phenomenon called ‘quorum sensing’. Availability of key nutrients, chemotaxis towards surface, surface adhesins and presence of surfactants are some factors which influence biofilm formation. Microorganisms growing in a biofilm are intrinsically more resistant to antimicrobial agents than planktonic cells.

High antimicrobial concentrations are required to inactivate organisms growing in a biofilm, as antimicrobial resistance can increase to 1,000-fold. With the emergence of biofilm associated diseases, there are considerable diagnostic problems for the clinical laboratory, decreased antimicrobial susceptibility, false negative cultures, visible but not cultivable organisms or inappropriate specimen. The determination of biofilm production in Candida spp. may be important for the management of invasive infections. There are various methods to detect biofilm production. These include

- Tissue Culture Plate (TCP),
- Tube method (TM),
- Congo Red Agar method (CRA),

1Senior Demonstrator, Department of Microbiology, 2Associate Professor and HOD, Department of Microbiology, 3Microbiologist, Department of Microbiology, Jhalawar Medical College, Jhalawar, India

How to cite this article: Rajesh Bansal, Yogendra Kumar Tiwari, Vasudev Patidar. Biofilm formation among various candida species and its role in antifungal resistance at tertiary care centre, Jhalawar. International Journal of Contemporary Medical Research 2019;6(5):E1-E4.

DOI: http://dx.doi.org/10.21276/ijcmr.2019.6.5.25
• bioluminescent assay,
• piezoelectric sensors method and
• fluorescent microscopic examination.

Study by dag et al., 2010 reported that Tube method showed very good agreement for the isolates producing strong biofilm, whereas differentiation of isolates producing weak biofilm was difficult. By the Congo red method, classification of existing biofilm was problematic. Among the three methods studied, microtiter plate method may be suggested as the most sensitive method, which is easy to conduct and applicable as a routine process.

Study aimed to investigate biofilm formation among candida species isolated from various clinical samples and its role in antifungal resistance.

MATERIAL AND METHODS

A retrospective observational study was conducted from October 2017 to Jan 2019. A total of 630 various clinical samples received in Microbiology department from patients with suspected Candida infection were collected and processed. The various clinical samples were including respiratory samples (sputum, bronchial wash and tracheal secretions), various body fluids, blood, urine, ear discharge, invasive devices (endotracheal tube, catheter tip and suction tip) and vaginal discharge. Samples were processed by Gram staining, KOH mount and culture on SDA and BHI agar. Isolated yeasts were identified and speciated by germ tube staining, KOH mount and culture on SDA and BHI agar.

Reference strains from quality control methods used were,
• Candida parapsilosis ATCC 22019
• Candida albicans ATCC 90028
• Candida tropicalis ATCC 750
• Candida krusei ATCC 6258

Biofilm formation ability of yeast isolates were tested by Tube Adherence Test and Tissue Culture Plate Method.

STATISTICAL ANALYSIS

The data was statistically analysed using the statistical package for Social science (SPSS)/ 21.0 (Copyright © SPSS Inc.). Frequency of qualitative variables was calculated and correlation was tested by Chi-square test. Statistical significance was accepted at p <0.05.

RESULTS

Non albicans candida 204/313 (65.18%) were predominant isolates than C. albicans 109/313 (34.82%). Depending on the results of various test done for speciation, C. Tropicalis (46.33%) was predominant isolate followed by C. Albicans (34.82%), C parapsilosis (10.54%), C. glabrata (5.75%) and C. krusei (2.56%). C. tropicalis was major isolate among various clinical samples whereas candida albicans was predominant. In body fluids (66.67%) and respiratory secretions (53.19%).

Tissue culture plate method (50.16%) was more sensitive than Tube method (29.07 %) for biofilm detection. Out of 313 isolates, 157 (50.16%) were found to be biofilm producers. Maximum biofilm production was obtained in blood samples (55.41%) followed by respiratory secretion (13.38%), Catheter tip (12.74%), pus (8.28%), vaginal (5.10%), urine (4.46%) and body fluids (0.64%) (graph-1).

Among Non albicans Candida, Candida tropicalis (52.86%) was most common Candida species to be isolated as biofilm producer followed by C. Parapsilosis (10.19%), C. glabrata (10.19%) and C. krusei (4.45%) while C. albicans was 35/157 (22.29%).

When Candida isolates were tested for biofilm formation capacity, biofilm production was most commonly observed for isolates of C. glabrata 16/18 (88.9%) and C. krusei 7/8 (87.5%) followed by C. tropicalis 87/145 (57.2%), C. parapsilosis 16/33 (48.5%) and C. albicans 35/109 (32.1%) isolates.

Antifungal resistance was observed more among biofilm producers. Fluconazole and (96.18%) and Ketoconazole (77.71%) were most resistant antifungal drugs in biofilm producers.

Graph-1: Correlation of Biofilm Formation with Clinical Samples

<table>
<thead>
<tr>
<th>Biofilm producers</th>
<th>Fluconazole</th>
<th>Ketoconazole</th>
<th>Itraconazole</th>
<th>Amphotericin B</th>
<th>Nystatin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>35</td>
<td>31</td>
<td>88.57</td>
<td>28</td>
<td>80.00</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>83</td>
<td>82</td>
<td>98.80</td>
<td>58</td>
<td>69.88</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>16</td>
<td>16</td>
<td>100.00</td>
<td>14</td>
<td>87.50</td>
</tr>
<tr>
<td>Candida</td>
<td>16</td>
<td>15</td>
<td>93.75</td>
<td>15</td>
<td>93.75</td>
</tr>
<tr>
<td>Candida Krusei</td>
<td>7</td>
<td>7</td>
<td>100.00</td>
<td>7</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td>151</td>
<td>96.18</td>
<td>122</td>
<td>77.71</td>
</tr>
</tbody>
</table>

Table-1: Correlation of Biofilm Producer and Antifungal Resistance
species are frequently found in the normal microbial flora of humans, which facilitates their encounter through implanted biomaterials and host surfaces. The devices become colonized by Candida which forms biofilm, the detachment of which can result in candidemia. Indwelling catheters therefore, represent a major risk factor associated with nosocomial Candida infections.

Biofilm formation was found to occur most frequently among Non albicans Candida species 122/157 (77.11%) than C. albicans 35/157(22.29%). Among Non albicans Candida, Candida tropicalis 83/ 157 (52.86%) was most common Candida species to be isolated as biofilm producer followed by C. Parapsilosis (10.19%), C. glabrata (10.19%) and C. krusei (4.45%). Similar results were obtained by Shin et al.,2002, Tumbarello et al., 2007 and Kumar and Menon, 2006.

When fungal isolates were tested for biofilm formation capacity, biofilm production was most commonly observed for isolates of C. glabrata 16/ 18 (88.9%) and C. krusei 7/8 (87.5%) followed by C. tropicalis 87/145 (57.2%), C. parapsilosis 16/33 (48.5%) and C. albicans 35/109 (32.1%) isolates In our study, this association of biofilm formation capacity with different Candida species was found to be statistically significant (P< 0.05). Similar results were obtained by Tumbarello et al., 2007 and Kumar and Menon, 2006.

The susceptibility of Candida strains to antifungal drug was performed by disc diffusion method as per CLSI M44-A2 protocol. In the present study, Antifungal resistance among biofilm producers and non-biofilm producers was compared. Fluconazole (151/157; 96.18%) and Ketoconazole (122/157; 77.71%) were most common antifungal drugs to be resistant among biofilm producers. Itraconazole (12/157; 7.64%), Amphotericin-B (12/157; 7.64%) and Nystatin (38/157; 31.93%) were found to be less resistant antifungal drugs among biofilm producers (table-1). Among non-biofilm producers, Maximum resistance was obtained for Fluconazole (11.54%) followed by Ketoconazole (6.46 %). No resistance was found for Itraconazole, Amphotericin B and Nystatin among non-biofilm producers. Similar results were obtained in study done by Kuhn et al., 2002 and Tumbarello et al., 2007. So, biofilm production was found to be an important factor associated with antifungal resistance. Microorganisms organized in biofilms could become resistant to antifungals due to metabolic changes, reduction of their cell growth rate, expression of resistance genes and the presence of an extracellular matrix. Consequently, biofilm related infections are difficult to treat.

CONCLUSION

Biofilm production is an important risk factor for antifungal resistance. So, it is necessary to evaluate candida isolates for biofilm production. It will guide clinician for correct antifungal selection with exact doses that required. It will help in decrease the cost of treatment and proper management of patient.
REFERENCES