Comparative Analysis of Platelet-Rich Fibrin and Hydroxyapatite in Management of Peripical Inflammatory Lesions: A Clinical and Radiographic Analysis

Shah Shahi Jahan¹, Shabir Ahmad², Mushtaq Mohammad³, Mubashir Younis⁴, Sumera Gul⁵, Muzafar Ahmad Bhat⁶

ABSTRACT

Introduction: Periapical lesions in teeth can be seen in long-standing untreated endodontic infection. Study aimed to evaluate bone regeneration in periapical lesions using MTA as retrograde filling of material with or without Hydroxyapatite and Platelet-Rich fibrin (PRF), and a combination of Hydroxyapatite and Platelet-Rich fibrin in curetted periapical defects and evaluate the patients clinically at each recall visit.

Material and Methods: Thirty healthy patients of both genders, ages 20 and 40 years were included. Patient had to have a tooth where root canal therapy had failed and having periapical radiolucency, and periapical root end surgery was required. Patients were divided into three groups, with ten patients each, as follows: Group I — root end cavity was filled with MTA. Group II — root end cavity was filled with MTA followed by placement of hydroxyapatite in the curetted periapical defect., Group III — root end cavity was filled with MTA followed by placement of PRF in the curetted periapical defect. The patients were followed clinically and radiographically. In all the three groups, patient recall visits were scheduled after 1, 3, 6, and 9 months time interval for clinical and radiological examination.

Results: A healing was observed after 9 months in Group III followed by Group II and Group I. The clinical and radiographic evaluation revealed that Group III (82.36%) patients showed significantly higher rate of bone regeneration with evidence of a trabecular pattern, at the end of 9 months followed Group II (65.16%), then Group I (60.12%).

Conclusions: Root end filling material contributes greatly to the success of surgical treatment and to improve healing of periapical defect we use host modulating agents such as PRF over grafts as these are autologous and contain growth factors which promote faster healing of periapical defects.

Keywords: Bone Regeneration; Hydroxyapatite; Periapical Lesion; Platelet-Rich Fibrin, MTA

INTRODUCTION

The periapical surgery removes diseased soft tissue and use of different graft material enhances new bone formation at the defective site.¹ Formation of new bone occurs with repair or regeneration. The commonly used technique for regeneration is the use of bone replacement grafts. These grafts can promote tissue regeneration by different mechanisms. Bone replacement material should be inert, non carcinogenic, and should be dimensionally stable. It should help in bone formation and resorb slowly to permit the formation of the new bone.² Biphasic calcium phosphate ceramic is good biomaterials for bone healing and regeneration.³ There are reports that have demonstrated healing with the formation of mature bone using this bone graft. To enhance the healing of periapical defects, modulating agents such as platelet concentrates – platelet-rich fibrin (PRF) is used. Blood sample were collected favorable for healing and immunity,⁴ which contains growth factors necessary for cell migration, attachment, proliferation, and differentiation and promote the healing of hard and soft tissues.⁵ Surgical endodontic treatment removes any associated extraradicular infection such as periapical granulomas and cysts. Purpose of this study was to evaluate and compare the healing of periapical defect after periapical surgery along white mineral trioxide aggregate (MTA) as retrograde filling material and using hydroxyapatite or PRF in curetted periapical defect.

MATERIAL AND METHODS

The present study was conducted on thirty patients having periapical pathology in maxillary anterior teeth taken from the department of oral and maxillofacial surgery Govt Dental College and Hospital Srinagar. Ethical clearance was taken from the Ethical Committee of the Institute. The intraoral radiographs were taken. Teeth selected had (i) radiolucency at the apex (minimum 0.5 cm) (ii) healthy periodontal tissue. Then Vitality of the tooth was checked before starting treatment. If the tooth found to be nonvital and met the criteria; then, it was selected for periapical surgical procedure.

Procedure

Consent was taken from the patient before the procedure. Preoperative radiograph of the tooth was taken, and size of

¹Registrar, ²PG Department, Department of Oral and Maxillofacial Surgery, ³Registrar, ⁴Year PG, Department of Conservative and Endodontics, Government Dental College, Srinagar, ⁵Registrar, Department Of periodontics, Government Dental College, Srinagar Jammu and Kashmir

Corresponding author: Dr. Muzafar Ahmad Bhat, Registrar, Department of Periodontics, Government Dental College, Srinagar Jammu and Kashmir

the radiolucency of the concerned tooth was measured using X-ray. Vitality of the tooth was checked using thermal and electric tests. Injection and diclofenac sodium 50mg were given intramuscularly ½ h to patient before the procedure to relieve the stress and increase the pain threshold. Surgical area was anesthetized by giving infraorbital and nasopalatine nerve blocks using 2% lignocaine with 1:100,000 adrenaline before endodontic procedure. The tooth was isolated using rubber dam application. Access cavity was prepared, and working length of canal was measured following Ingle’s method. Root canal was prepared using crown-down technique. During instrumentation, copious irrigation was done with 3% sodium hypochlorite (NaOCl) solution alternating with normal saline. After thorough biomechanical preparation, tooth was obturated with gutta-percha cones and only periapical defect was curetted (60.12%). However, a significantly higher healing results were observed after 9 months when apicoectomy was done using retrograde filling materials with PRF as a graft material in Group III (82.36%) followed by hydroxyapatite in Group II (65.16%) as compared to Group I, where no graft material was added and only periapical defect was curetted (60.12%). However, no significant difference was observed when comparing Group I with Group II (P = 0.831) and Group II with Group III (P = 0.134).

A significant difference was observed when comparing Group I with Group III (P = 0.040) [Table 1 and Figures 1-4].

Table-1: Comparison of percentage change in size of radiolucency at different time intervals between three groups

<table>
<thead>
<tr>
<th>S. No</th>
<th>time</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre- to post-operative</td>
<td>−34.24±14.71</td>
<td>−33.14±24.43</td>
<td>−61.71±46.41</td>
<td>0.997</td>
</tr>
<tr>
<td>1</td>
<td>Pre- to after-1 month</td>
<td>−13.25±19.82</td>
<td>−9.00±25.33</td>
<td>−33.00±45.41</td>
<td>0.957</td>
</tr>
<tr>
<td>2</td>
<td>Pre- to after-3 month</td>
<td>13.24±26.04</td>
<td>19.66±21.62</td>
<td>23.11±31.79</td>
<td>0.867</td>
</tr>
<tr>
<td>3</td>
<td>Pre- to after-6 month</td>
<td>39.93±23.20</td>
<td>44.28±17.11</td>
<td>56.94±28.85</td>
<td>0.867</td>
</tr>
<tr>
<td>4</td>
<td>Pre- to after-9 month</td>
<td>0.12±22.22</td>
<td>65.16±13.30</td>
<td>82.36±18.82</td>
<td>0.831</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.040</td>
</tr>
</tbody>
</table>

*S*Significant 0.04. *One-way ANOVA*
TGF-beta and PDGF promote healing of both soft tissue factor-beta (TGF-beta), vascular endothelial growth factor. Platelet-Rich fibrin (PRF) contains cytokines, leukocytes, and growth factors such as platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta), vascular endothelial growth factor. PRF is an autologous graft of platelets on a fibrin meshwork that contains cytokines, leukocytes, and growth factors such as platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta), vascular endothelial growth factor. TGF-beta and PDGF promote healing of both soft tissue and bone through collagen production. PDGF promotes angiogenesis, and releases growth factors from host tissue which enhances bone repair and regeneration. TGF-beta activates fibroblasts to produce collagen, endothelial cells for angiogenesis, chondro progenitor cells to produce cartilage. Fibrin serves as a scaffold for cell migration and platelet entrapment. PRF has advantages over bone grafting materials as autologous, indispensable in tissue wound healing and acts as better space filler. PRF is easy to obtain and is inexpensive. It has slow polymerization which leads to favorable healing. Some patients complained of pain and swelling 2–3 days postoperatively after the surgical procedure. These findings are in concurrence with study done by Christiansen et al. When patients treated with PRF and evaluated for clinical signs of pain, swelling, postoperative discomfort, and sensitivity to percussion, it was seen that all the treated patients were comfortable. The present study is in concurrence with the study conducted by Del Fabbro et al., who suggested that use of platelet concentrates lowers levels of pain, swelling, and other symptoms. The postoperative healing results were evaluated at 1, 3, 6, and 9 months radiographically and compared with preoperative radiograph. It was seen that there was decrease in the size of radiolucency with every follow-up in all the three groups with maximum decrease in size of radiolucency in Group C (82.36%) > Group B (65.16%) > Group A (60.12%). However, comparing Group A with Group B (P = 0.831) and Group B with Group C (P = 0.134) no significant difference was observed. While as when comparing Group A with Group C (P = 0.040) a significant difference was observed. Healing results of our study was same as in a study conducted by Jayalakshmi et al. where there was a predictable clinical and radiographic bone regeneration after using the combination of PRF with beta tricalcium after follow-up period of 3, 6, 9, and 12 months.

CONCLUSION

It was concluded from this study that a good quality apical seal by using root-end filling materials contributes to the success of the treatment. The success rate can be modified and increased by using grafts, and various host modulating agents. Calcium phosphate cements used as grafts promotes the formation of new bone. However, PRF as graft is preferred as it is autologous and helps in healing by release of growth factors needed for the formation of bone.

REFERENCES

4. Choukroun J, Diss A, Simonpieri A, Girard MO,

