Study of Nuclear Anomalies and Cytological Features in Buccal Mucosa of Tobacco Users

Seema Baxi¹, Mayuri Gohil²

ABSTRACT

Introduction: Tobacco, a chemical carcinogen, has genotoxic effects on buccal mucosal cells. The present study is performed to evaluate all cytological features in exfoliated buccal mucosal cells of tobacco users and to compare them in different form of tobacco users i.e. smokers and smokeless “chewers”. Also to evaluate whether Micronuclei frequency can be used as a biomarker and screening tool to assess genotoxicity in tobacco users.

Material and methods: Oral buccal mucosal exfoliated cells from total 80 tobacco users-40 smokers and 40 smokeless tobacco chewers, and 20 contols with healthy mucosa were taken. Micronuclei frequency and other nuclear anomalies were compared using Papanicolaou stain. The results are analyzed statistically using t-test and Fisher’s Exact test.

Results: Smears of individual with tobacco habits showed significant increase in Mean Micronuclei (MN) per 100 screened cells (p=0.01). Cytological features like orangophilia, keratinisation, degenerative changes and all nuclear anomalies are increased in tobacco users but only nuclear fragmentation show statistically higher incidence. No statistical significant difference was found for Mean MN and other nuclear anomalies between tobacco smokers and smokeless tobacco “chewers”.

Conclusion: Nuclear anomalies and Mean MN frequency are increased in any form of tobacco users, thus MN frequency can be used as a biomarker and a screening tool for genotoxicity in any form of tobacco users.

Keywords: Cytology, Micronuclei, Nuclear Anomalies, PAP, Tobacco Smoker.

INTRODUCTION

Tobacco is chemical carcinogen, having genotoxic effects. Buccal cells are the first barrier for the inhalation or ingestion route and are capable of metabolizing proximal carcinogens to reactive products, result in genomic instability and in late stage reflected grossly as submucous fibrosis, leukoplakia, erythroplakia and finally in squamous cell carcinoma. Microscopic changes are said to occur earlier in buccal mucosa which include micronuclei, and other nuclear anomalies like karyorrhexis, karyolysis, pyknosis, binucleation, fragmentation and broken egg nuclei.¹

Micronuclei (MN) are small, extra-nuclear bodies which have separated from the main fragment, generated during cellular division by late chromosomal fragments because of their association with chromosomal aberrations. They have generated interest as a cytological feature of genotoxicity.²,³,⁴,⁵ The MN test is a quantitative measure of the genotoxic action of carcinogens and mutagens.⁶,⁷ MN scoring can be used as a biomarker to identify different pre-neoplastic conditions much earlier than the manifestations of clinical features.²,³,⁴,⁵,⁶,⁷ Few studies have been done MNs in tobacco smokers but only a few on tobacco chewers.

Large number of tobacco chewers (mava/ gutka) suffer from high morbidity and mortality due to oral cancers. Since no screening tests are available to show morphological changes in buccal mucosa amongst these mava and gutka users, this study was undertaken to assess cytological assessment of buccal mucosa at Tertiary Medical Care Centre with the following aims:

To evaluate the cytological features, Micronuclei (MN) frequency and other Nuclear anomalies (NA) in buccal mucosal cells of tobacco users,

To compare the micronuclei (MN) frequency and other Nuclear anomalies in different form of tobacco use- smoking and smokeless tobacco (“chewers”)

To access if MN frequency can be used to access the genotoxicity in tobacco users.

MATERIAL AND METHODS

A prospective comparative study was conducted over a four month period in a tertiary care hospital. To avoid confounding factors found in other studies like age, sex and alcohol, only non alcoholic male between 25-45 years were assessed. The subjects were selected depending on the following criteria:

Inclusion criteria

Group 1: Controls: 25-45 years male with no habit of smoking or tobacco chewing, no buccal mucosal lesions – sample size 20

Group 2: Cases: 25-45 years male Tobacco users - sample size 80

2a) Smokers- (5-20 bidi/cigarette smoking/day for more than 5 years)

2b) Smokeless tobacco “chewers”- (2 or more mava/day for more than 5 years)

Exclusion criteria

1. Patients who had oral x-ray in previous one month.

2. Patients who had received treatment for the buccal

¹Associate Professor, ²Tutor, Department of Pathology, Government Medical college, Bhavnagar, Gujarat, India

Corresponding author: Dr. Mayuri Gohil, M.D. (Pathology), Tutor, Department of Pathology, Government Medical College, Bhavnagar, Gujarat, India

How to cite this article: Seema Baxi, Mayuri Gohil. Study of nuclear anomalies and cytological features in buccal mucosa of tobacco users. International Journal of Contemporary Medical Research 2017;4(11):2284-2289.
Nuclear Anomalies and Cytological Features in Buccal Mucosa

Table-R1: Comparison of MN, MNt and Mean MN per 100 screened cells.

<table>
<thead>
<tr>
<th>Frequency of Micronucleated cells</th>
<th>Controls (n=17) Mean (± 1 SD)</th>
<th>Cases (n=71) Mean (± 1 SD)</th>
<th>Unpaired t-test (P value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MNt /100 cells</td>
<td>7.0(±4.2)</td>
<td>6.7(±5.1)</td>
<td>0.83</td>
</tr>
<tr>
<td>2 MNt /100 cells</td>
<td>2.6(±2.2)</td>
<td>3.5(±4.0)</td>
<td>0.38</td>
</tr>
<tr>
<td>3 MNt /100 cells</td>
<td>1.3(±1.7)</td>
<td>2.1(±3.1)</td>
<td>0.32</td>
</tr>
<tr>
<td>4 MNt /100 cells</td>
<td>0.5(±0.9)</td>
<td>1.1(±1.6)</td>
<td>0.14</td>
</tr>
<tr>
<td>≥ 5 MNt/100 cells</td>
<td>0.2(±0.6)</td>
<td>0.7(±1.1)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table-R2: Frequency of 1,2,3,4, ≥ 5 micronucleated cells among controls and cases.

<table>
<thead>
<tr>
<th>Condensed nuclei</th>
<th>Controls n=17</th>
<th>Cases n=71</th>
<th>Fisher’s Exact test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>P=0.65</td>
</tr>
<tr>
<td>Karyorrhexis</td>
<td>10</td>
<td>26</td>
<td>P=0.11</td>
</tr>
<tr>
<td>Karyolysis</td>
<td>1</td>
<td>13</td>
<td>P=0.29</td>
</tr>
<tr>
<td>Binucleated cells (BN)</td>
<td>0</td>
<td>4</td>
<td>P=1.00</td>
</tr>
<tr>
<td>Broken egg nucleus (BEN)</td>
<td>0</td>
<td>7</td>
<td>P=0.34</td>
</tr>
<tr>
<td>Nuclear budding (NB)</td>
<td>2</td>
<td>2</td>
<td>P=0.17</td>
</tr>
<tr>
<td>Fragmented nuclei (FN)</td>
<td>2</td>
<td>29</td>
<td>P=0.03 Statistically significant</td>
</tr>
</tbody>
</table>

Table-R3: Nuclear anomalies other than MN among controls and cases.

The subjects were asked to rinse their mouth thoroughly before taking the scrapings in order to remove food particles, debris and oral bacteria from the oral cavity. Using a dry wooden spatula, the scraping was taken from right buccal mucosa and spread over a clear glass slide in circular manner from central of slide to periphery. The smears were wet fixed, in methyl alcohol for 30 minutes and stained with Papanicolaou-ready to use stain. Slides were examined under scanner for cellularity and oil for nuclear stained with Papanicolaou-ready to use stain. Slides were

Smears were wet fixed, in methyl alcohol for 30 minutes and spread over a clean glass slide in circular manner from central of slide to periphery. The

avoid repetition of count. Total Micronuclei (MN), total number of micronucleated cells (MNt) and mean micronuclei frequency (Mean MN= Total MN/MNt) per 100 screened cells were counted.

The criterion which was developed by Tolbert et al.29 were used for counting the micronuclei. Parameters for the cells to be scored are:

1. Intact cytoplasm and relatively flat cell position on the slide,
2. Little or no overlap with adjacent cells,
3. Little or no debris, and

To designate an extra nuclear body as a MN, the following criteria given by Tolbert et al.29 were used:

1. Rouned smooth perimeter suggestive of a membrane
2. Less than a third the diameter of the associated nucleus, but large enough to discern shape and color
3. Staining intensity similar to that of the nucleus
4. Texture similar to that of nucleus
5. Same focal plane as nucleus
6. Absence of overlap with or bridge to the nucleus.

Nuclear Anomalies (NA) other than MN like Condensed Nuclei, Karyorrhexis, Karyolysis, Binucleation, Broken egg nuclei and fragmented nuclei were also counted in both study groups.

STATISTICAL ANALYSIS

“Unpaired t-test” was used for the comparison of MN, MNt, and Mean MN among tobacco users (cases) and tobacco non-users (controls) and also used for comparison between two different form of tobacco users- smokers and smokeless tobacco -chewers. For comparison of different types of meta-nucleated cells among cases and controls, “Fisher’s Exact Test” was used. All the Statistical analysis was done by using ‘Graphpad online’ software. P<0.05 was considered as statistically significant in all results.

RESULTS

A total of 80 cases and 20 controls were studied. Out of 80 cases, 40 were tobacco chewers and 40 were smokers. Three control and nine cases did not have adequate cellularity, so 17 controls and 71 cases were analysed statistically. All the Statistical analysis was done by using ‘Graphpad online’ software. P<0.05 was considered as statistically significant in all results.

RESULTS

A total of 80 cases and 20 controls were studied. Out of 80 cases, 40 were tobacco chewers and 40 were smokers. Three control and nine cases did not have adequate cellularity, so 17 controls and 71 cases were analysed statistically. All the Statistical analysis was done by using ‘Graphpad online’ software. P<0.05 was considered as statistically significant in all results.
Control had 20 MN in 12 MNt cell/100 cells where as tobacco users had 31 MN in 14 MNt cell/100 cells. The range of MN and MNt cells in both groups was very wide. Smokers and chewers both have almost similar MN, MNt and Mean MN values.

The mean of 2, 3, 4 and ≥5 micronucleated cells especially of 4 and ≥5 are higher in tobacco users. However the difference was not of statistical significance (Table R2).

Frequency of all nuclear anomalies is increased in tobacco users but only fragmented nuclei show statistical higher incidence (Table R3).

DISCUSSION

Many studies have been done in India and abroad on MN frequency in 2 or more of the groups of non tobacco users, users with premalignant lesion or carcinoma. Most have assessed only smokers. In this study overall cytological findings in buccal mucosa of tobacco users was studied and compared with controls. We also compared MN amongst chewers and smokers of tobacco, evaluated the number of cells with more than 1 MN and nuclear anomalies other than MN using a PAP stains rather than using Giemsa which has been done in most previous studies.

In PAP, smear is wet fixed in alcohol which gives a clear background, whereas in giemsa stain, the smear is air dried and stained smear has background which is full of debris and salivary proteins, thus masking the counting of MN.

Control and cases selected for the study were all nonalcoholic males who were 25-45 years. This was to remove confounding factor of alcohol consumption, age and gender noted in other studies.

Cytology of buccal mucosa in Controls

The buccal mucosa of controls exfoliated easily and smeared in a monolayer (figure 1a). Squamous cells showed minimal overlapping and folding. They did not show any orangophilia, keratinisation and necrotic changes. Nuclear karyorrhexis and disproportionate karyolysis were seen (figure 1b,1c). MN were also seen in many of the controls. However BN, BEN and fragmentation like nuclear anomalies were not seen.

Cytology of buccal mucosa in Cases

The ease of exfoliation decreased in tobacco users. Squamous cells did not spread well in PML. Figure 2a,2b shows buccal mucosal scraping in a case of sub mucous fibrosis and erythroplakia respectively. There was increased orangophilia and folding of cells, keratinisation and degenerative changes in the cells. Large no. of cases showed mucosal cell contamination with bacteria. These could be easily distinguished from MN (figure 2c). It indicates that oral hygiene was poor in tobacco users.

Nuclear changes (Figure 3) seen in tobacco users were MN, fragmentation, karyorrhexis, karyolysis, broken egg nuclei, condensed nuclei, and binucleation in decreasing order of frequency (71/29/26/13/7/6/4 out of 71 cases respectively). Two bidi smoker without any oral lesion showed CIN 3 (figure 4a) and malignant cells (figure 4b) respectively.
Squamous pearl formation was also seen in the later case (figure 4c).
The result of the present study is comparable with other studies (Table D1) that have showed smoking causes an increase in mean number of micronuclei indicating that tobacco has genotoxic effect.
The wide range of MN and MNt cells in controls and cases seen in table R1 suggest that multiple confounding factors exist in both groups which deflect the expected results. The probable factors in the population of this study could be anaemia, dietary vitamin deficiencies, environmental pollution- exposure to organic solvents, diesel derivatives, polycyclic aromatic hydrocarbons, lead containing paints, remnants of pesticides in agricultural products and solvents and arsenic contaminated drinking water.
Micronucleus frequencies would vary significantly between samples. Such pattern would also be produced if large differences occurred in the dosage of the carcinogen in repeated exposures. As micronuclei tend to decrease in frequency with time as chromosomal damage leads to cell

<table>
<thead>
<tr>
<th>Study name</th>
<th>n = control/ cases</th>
<th>Stain</th>
<th>Mean MN in control</th>
<th>Mean MN in cases</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozkul et al. 1997</td>
<td>15/39</td>
<td>Feulgen</td>
<td>-</td>
<td>1.99</td>
<td>Significant</td>
</tr>
<tr>
<td>Konopacka et al. 2003</td>
<td>70/50</td>
<td>Feulgen</td>
<td>0.55</td>
<td>1.50</td>
<td>Significant</td>
</tr>
<tr>
<td>Naderi et al. 2012</td>
<td>23/40</td>
<td>Feulgen</td>
<td>0.94</td>
<td>1.95</td>
<td>Significant</td>
</tr>
<tr>
<td>Grover et al. 2012</td>
<td>15/45</td>
<td>Feulgen</td>
<td>1.60</td>
<td>3.80</td>
<td>Significant</td>
</tr>
<tr>
<td></td>
<td>15/45</td>
<td>PAP</td>
<td>7.70</td>
<td>16.80</td>
<td>Significant</td>
</tr>
<tr>
<td>Kamath et al. 2014</td>
<td>50/50</td>
<td>PAP</td>
<td>34.92</td>
<td>57.96</td>
<td>Significant</td>
</tr>
<tr>
<td>Our study</td>
<td>20/80</td>
<td>PAP</td>
<td>1.53</td>
<td>2.19</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Table-D1: Comparison of MN in smokers (cases) and non-smokers (controls)
death or micronuclei are lost during cell division. It seems likely that cells with more chromosomal damage, and hence more micronuclei, would be lost at a higher frequency than those with less damage. Many of the studies have reported increases in MNs in the buccal mucosa cells, have been performed in subgroups of subjects with specific lifestyle habits, i.e. chewers of betel quids (areca nut, betel leaves, slaked lime and tobacco); reverse smokers from India and Philippines; snuff dippers from Canada and users of Khaini tobacco from India (tobacco mixed with slaked lime).13-15

Comparative studies on individuals who consumed tobacco in different forms are scarce.17 One such available study is compared in table D2. Palaskar et al. reported values of MN in 500 cases hence their figure appear to be very high. They found that smokers have lesser value than chewers. In our study no significant difference was found. It may be due to two reasons. The nicotine content of Indian brands of smoking tobacco (e.g. in bidies) is higher as compared to international brands (e.g. in cigarettes and cigars). And in smokeless tobacco “chewing form”, the nicotine content is much lower than the smoking form, but the average daily consumption and its direct contact with the oral buccal mucosa has made it comparable to smoking form. To find whether tobacco induces nuclear anomalies, other than micronuclei, we have evaluated the occurrence of different types of metanucleated cells in both controls and cases. No studies are available for the discussion of this. Cells with 1 MN are highest in both cases and controls, but the percentage of >1 MN increases in tobacco users. Directly comparable studies are not available for the discussion of different nuclear anomalies. Nersesyan et al. showed condensed chromatin, karyorrhexis, karyolysis and binucleation were 54%, 146%, 350% and 117% higher in smokers than in non-smokers. In our study, though binucleation are also seen in tobacco users with increased frequency compared to controls, but only fragmentation of nuclei is seen significantly higher in tobacco users. Mean Micronuclei was frequency significantly higher in tobacco users. Thus micronuclei frequency can be used to access genotoxicity and as a screening tool. The Micronuclei frequency in tobacco chewers and smokers was nearly equal, but no difference was noted in the different types of tobacco user.

ACKNOWLEDGEMENTS

We thank Dr. Keyur N. Parmar for their extreme support for statistical analysis of the data collected.

ABBREVIATION

MN -Micronuclei, MNt- Micronucleated cell, NA-Nuclear Anomalies, BN- Binucleated, BEN- Broken Egg Nuclei, NB- Nuclear Budding, FN-Fragmented Nuclei, PAP-Papanicolaou stain, PML- Pre-malignant Lesion

REFERENCES

Source of Support: Nil; Conflict of Interest: None
Submitted: 26-10-2017; Accepted: 24-11-2017; Published: 06-12-2017