Assessing Asthma Control using Asthma Control Test and Spirometry

Mrinal A. Raikar¹, Sweta Da Silva Pereira²

ABSTRACT

Introduction: The goal of asthma treatment is to obtain and maintain a good control of symptoms. The focus of asthma control is now shifting to an assessment and treatment approach. This study aimed at assessing asthma control using ACT scores and to determine its relationship with lung function parameters among persons with asthma in the Department of Respiratory Medicine.

Material and methods: It was a cross-sectional study. The study included 66 patients with bronchial asthma proved by bronchodilator reversibility and was conducted over a period of two years. The ACT was administered to assess the control of asthma. Spirometric test was done in patients using a portable spirometer.

Results: As per Asthma control test 80% had well controlled asthma while 20% had uncontrolled asthma. As per analysis with spirometer (FEV1) 68% had uncontrolled asthma while 32% had asthma under control. The Pearson correlation coefficient in the relationship between ACT and FEV1 (% predicted value) was 0.5, with moderate correlation between ACT and spirometry. The intra-class correlation the η (eta) value was found to be >0.011 which was not significant.

Conclusion: Our study showed that the results of the asthma control test did not match with the results of spirometric analysis. Thus, FEV1 by itself is not a reliable tool measuring of asthma control. ACT is a simple method that addresses multiple clinical dimensions of control that are relevant to the well – being of the patient and provides a quantitative assessment of asthma control.

Keywords: Asthma Treatment, Lung Function, Bronchodilator Reversibility, Obesity

INTRODUCTION

An estimated 300 million people worldwide suffer from asthma, with an expected increase by another 100 million by the year 2025.¹ It poses a major and detrimental health and economic burden.² International guidelines indicate that the principal goal of asthma management is to obtain control and reduce the risk of exacerbations.³ Asthma control refers to the control of disease manifestations both in terms of symptoms and laboratory investigations.³ Poor assessment of asthma control is a major cause of suboptimal asthma management globally so the focus is now changing to an assessment and treatment approach based on control. Although no comprehensive tool exists to identify and demarcate asthma control, some instruments have been developed, tested and validated over the last several years to measure control.⁴⁻⁸ Some of these tools are the Juniper Asthma Control Questionnaire (ACQ)⁴, Asthma Control Scoring System (ACSS)⁵ and the Asthma Control Test (ACT).⁸ The Asthma Control Test was developed by Nathan et al⁹ and it is a validated tool for assessing asthma control while Spirometry is known to be a basic tool for assessing asthma control.

In this study, asthma control test was used to assess asthma control and the findings were corrected with spirometric analysis to evaluate the validity and reliability of asthma control test as a short, simple, patient – based tool for indentifying patients with poorly controlled asthma.

MATERIAL AND METHODS

This study was conducted over a period of two years, in the Department of Respiratory Medicine, in a tertiary care teaching hospital at Goa. It was a cross sectional analytical study. Persons with asthma were recruited consecutively into the study. Sixty six patients 12 years and above and diagnosed to have asthma, proved by bronchodilator reversibility were included in the study. Smokers and ex- smokers were excluded from the study. Data was collected on a structured proforma designed for the study. Ethical approval was taken from the Institutional Ethical Committee. Informed consent was taken from all subjects. The asthma Control Test was applied to patients 12 years of age or older with diagnosis of asthma, attending an asthma clinic. Each of the five questions of ACT was explained to the patients before the completion of the questionnaire. A total of 25 points indicates complete control, from 20 to 24 points good control and less than 20 points out of control. Subsequently a spirometric test was done in every patient using a portable spirometer. The asthma control test was used to clinically evaluate asthma control in the study subjects taking part in this study and compared the correlation with spirometric analysis of lung function.

STATISTICAL ANALYSIS

Statistical analysis was done using SPSS version (10). Continuous variables were expressed as means ± standard deviation and categorical variables as percentages. The Correlation between levels of asthma control by ACT scores and lung function parameters were assessed using Pearson’s linear correlation co-efficient, P-value of <0.05 was considered significant.

¹Ex- Lecturer, Department of Respiratory Medicine, ²Ex- Lecturer, Department of Radiodiagnosis, Goa Medical College Goa, India

Corresponding author: Dr. Yvonne Pereira, GHS-2, Gomeco Cooperative Hsg Society, Bambolim, Goa, India

How to cite this article: Mrinal A. Raikar, Sweta Da Silva Pereira. Assessing asthma control using asthma control test and spirometry. International Journal of Contemporary Medical Research 2017;4(8):1689-1693.
RESULTS

A total of 66 patents of confirmed bronchial asthma proved by bronchodilator reversibility were included in the study. Out of these 66 subjects, 44 were inducted for analysis with spirometry (pre – bronchodilator FEV1) and asthma control test. The reason for this being that 22 patients were not prescribed short acting inhaled beta-2 agonists as reliever medication and hence could not be assessed with the asthma control test.

The percentage of female patients in the study sample was found to be 74% as compared to males which was 26%. Maximum number of patients with bronchial asthma in age group of 41-50 years were females and in the age group of 21-30 years age group were males. The mean age of the sample was 41.21 years (±13.97), 33% of the total number of patients were overweight i.e. obese in this study of which 4% had uncontrolled asthma as per asthma control test.

The mean value for Asthma control test was 20.886 (+ 2.191) as shown in Table-1. Based on the questionnaire patients were classified as having complete control of their asthma (score of 25 points), 80% subjects had well controlled asthma while 20% subjects had uncontrolled asthma.

Based on the asthma control test 80% subjects had well controlled asthma while 20% subjects had uncontrolled asthma. The mean value for asthma control test was 20.886 (+ 2.191).

On administering the Asthma control test, it was found that 80% subjects had well controlled asthma while 20% subjects had uncontrolled asthma. The mean value for Asthma control test was 20.886 (+ 2.191) as shown in Table-1.

Based on spirometric analysis (FEV1), 68% of the patients had uncontrolled asthma while 32% had asthma under control. The mean value for FEV1 was 72% (+0.123), as presented in Table-2.

The Pearson correlation coefficient in the relationship between Asthma Control Test and FEV1 (%Predicted Value) was +0.5. This suggests that a moderate degree of correlation between ACT and spirometry as depicted in Table-3.

The percentage of female patients with asthma was 74% as compared to males which was 26%. These findings are consistent with those of Jumbo Johnbull et al10, where in females constituted 38(58.5%) of the study subjects while 27 (41.5%) were males. International Asthma Patient Insight Research (INSPIRE) study by Partridge et al11 also found bronchial asthma to be commoner among the females 38 (58.5%). Mbatchou Ngahane Bertrand Hugo et al12, in their study reported 81 (33.3%) to be male while 162 (66.7%) were females.

In this study assessment of the level of asthma control was done using two parameters: Patients were evaluated using the asthma control test which is a 5-point questionnaire and pulmonary function test using a portable spirometer. Based on the questionnaire patients were classified as having complete control of their asthma (score of 25 points),

<table>
<thead>
<tr>
<th>Level of control</th>
<th>Poor control</th>
<th>Good control</th>
<th>Complete control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>9</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Percentage</td>
<td>20%</td>
<td>80%</td>
<td>0</td>
</tr>
</tbody>
</table>

Table-1: Level of control as per asthma control test

<table>
<thead>
<tr>
<th>Total number</th>
<th>Uncontrolled</th>
<th>Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>68%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table-2: Level of control as per spirometric analysis

<table>
<thead>
<tr>
<th>Q1</th>
<th>Pearson correlation</th>
<th>Sig. (2 – Tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>.500**</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fev</th>
<th>Pearson correlation</th>
<th>Sig. (2 – Tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.500**</td>
<td>.001</td>
<td>44</td>
</tr>
</tbody>
</table>

Table-3: Correlations between act and spirometry

<table>
<thead>
<tr>
<th>Intra-class Correlation</th>
<th>95% Confidence Interval</th>
<th>F Test with True Value 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>Single Measures</td>
<td>.011⁺</td>
<td>-.014</td>
</tr>
<tr>
<td>Average Measures</td>
<td>.021⁺</td>
<td>-.028</td>
</tr>
</tbody>
</table>

The intra – class correlation value η (eta) was found to be <0.011. The correlation between the Asthma Control Test and pulmonary function tests was not significant as illustrated in Table-4.
well controlled asthma (score of 20 – 24 points) or poorly controlled asthma (score of 19 or less). A portable spirometer was used to classify patients as having asthma under control (FEV1 80% predicted or above) or uncontrolled asthma (FEV1 less than 80% predicted).

33% of the patients were classified as overweight or obese. Out of these, 2 (4%) patients had uncontrolled asthma as per asthma control test, whereas 15 (34%) of these patients had uncontrolled asthma as per spirometric analysis. Although obesity is a recognized risk factor for some medical illnesses evidence suggests that obesity may also contribute to or even cause asthma. Its has been observed that asthma prevalence is increased in obese persons. When obese asthma patients lose weight, there is a decrease in asthma symptoms and severity. Increased abdominal and chest wall mass in obese people may be causing the lower functional residual capacity. Since lung volume is a major determinant of airway diameter, it is possible that these changes in residual capacity allow smooth airway muscles to shorten excessively when activated. While weight loss improves lung function, it does not affect airway responsiveness. This is consistent with the hypothesis that obesity plays a role in irreversible airway remodeling. Chronic low level systemic inflammation is present in obese persons – even in the absence of an inflammatory trigger.

We found that out of the 66 subjects analyzed 18 subjects had history suggestive of allergic rhinitis accounting for 27% of the total number of cases. In our study the prevalence of allergic rhinitis was elicited based on the three cardinal observations were made in the Asthma Insight and Reality in Europe (AIRE) by Rabe et al 20 and International Asthma Patient Insight Research (INSPIRE) study by Partridge et al. 21 Asper spirometric analysis 29 subjects (68%) had uncontrolled asthma and 15 subjects had their asthma under control. The Pearson's correlation coefficient in the relationship between ACT and FEV1 (% predicted value) was 0.5. This suggests that a moderate degree of correlation between ACT and spirometry exists when different percentiles of fev1 are used for comparison. The Intra-class correlation value \(\eta \) (eta) was found to be <0.011. Hence the correlation between the Asthma Control Test and pulmonary function tests was not significant. This is in accordance with the findings reported by Jumbo Johnbull et al.10 These findings were reported by Mendoza et al10 using the ACT in a hospital-based study in found that only 28% of the respondents had well controlled asthma. The Reality of Asthma Control (TRAC) study by FitzGerald et al, using the Canadian Asthma Consensus guidelines showed that only 47% of respondents had controlled asthma. Similar observations were made in the Asthma Insight and Reality in Europe (AIRE) by Rabe et al 20 and International Asthma Patient Insight Research (INSPIRE) study by Partridge et al. 21 Socioeconomic status (SES) has been linked to various health outcomes, with lower SES being associated with higher rates of morbidity and mortality from several chronic diseases, chronic obstructive pulmonary disease, and diabetes. However, SES may be particularly relevant to asthma due to pathways by which it could adversely impact asthma outcomes. At the individual level (e.g., education attainment, income), asthmatics of lower SES may have higher exposures to indoor (e.g., cockroaches, tobacco smoke) and outdoor (e.g., urban pollution, allergens) and tend to use less inhaled corticosteroids, thus increasing risk for acute asthma exacerbations. Though the SES-asthma link has been established in children and in adults, less is known about associations between individual-level SES and asthma in adults.

In the analysis it was found that 9 subjects (20%) of asthma patients had poorly controlled asthma, 35 subjects (80%) had well controlled asthma as per asthma control test and none of the patients had complete control of asthma as per asthma control test. These findings do not corroborate with those of Jumbo Johnbull et al 10 who reported that only 24(37%) of the subjects had well controlled asthma as per the ACT. Similar findings were reported by Mendoza et al using the ACT in a hospital-based study in found that only 28% of the respondents had well controlled asthma. The Reality of Asthma Control (TRAC) study by FitzGerald et al, using the Canadian Asthma Consensus guidelines showed that only 47% of respondents had controlled asthma. Similar observations were made in the Asthma Insight and Reality in Europe (AIRE) by Rabe et al 20 and International Asthma Patient Insight Research (INSPIRE) study by Partridge et al 21 Socioeconomic status (SES) has been linked to various health outcomes, with lower SES being associated with higher rates of morbidity and mortality from several chronic diseases, chronic obstructive pulmonary disease, and diabetes. However, SES may be particularly relevant to asthma due to pathways by which it could adversely impact asthma outcomes. At the individual level (e.g., education attainment, income), asthmatics of lower SES may have higher exposures to indoor (e.g., cockroaches, tobacco smoke) and outdoor (e.g., urban pollution, allergens) and tend to use less inhaled corticosteroids, thus increasing risk for acute asthma exacerbations. Though the SES-asthma link has been established in children and in adults, less is known about associations between individual-level SES and asthma in adults.

In the analysis it was found that 9 subjects (20%) of asthma patients had poorly controlled asthma, 35 subjects (80%) had well controlled asthma as per asthma control test and none of the patients had complete control of asthma as per asthma control test. These findings do not corroborate with those of Jumbo Johnbull et al 10 who reported that only 24(37%) of the subjects had well controlled asthma as per the ACT. Similar findings were reported by Mendoza et al using the ACT in a hospital-based study in found that only 28% of the respondents had well controlled asthma. The Reality of Asthma Control (TRAC) study by FitzGerald et al, using the Canadian Asthma Consensus guidelines showed that only 47% of respondents had controlled asthma. Similar observations were made in the Asthma Insight and Reality in Europe (AIRE) by Rabe et al 20 and International Asthma Patient Insight Research (INSPIRE) study by Partridge et al 21 Socioeconomic status (SES) has been linked to various health outcomes, with lower SES being associated with higher rates of morbidity and mortality from several chronic diseases, chronic obstructive pulmonary disease, and diabetes. However, SES may be particularly relevant to asthma due to pathways by which it could adversely impact asthma outcomes. At the individual level (e.g., education attainment, income), asthmatics of lower SES may have higher exposures to indoor (e.g., cockroaches, tobacco smoke) and outdoor (e.g., urban pollution, allergens) and tend to use less inhaled corticosteroids, thus increasing risk for acute asthma exacerbations. Though the SES-asthma link has been established in children and in adults, less is known about associations between individual-level SES and asthma in adults.

In the analysis it was found that 9 subjects (20%) of asthma patients had poorly controlled asthma, 35 subjects (80%) had well controlled asthma as per asthma control test and none of the patients had complete control of asthma as per asthma control test. These findings do not corroborate with those of Jumbo Johnbull et al 10 who reported that only 24(37%) of the subjects had well controlled asthma as per the ACT. Similar findings were reported by Mendoza et al using the ACT in a hospital-based study in found that only 28% of the respondents had well controlled asthma. The Reality of Asthma Control (TRAC) study by FitzGerald et al, using the Canadian Asthma Consensus guidelines showed that only 47% of respondents had controlled asthma. Similar observations were made in the Asthma Insight and Reality in Europe (AIRE) by Rabe et al 20 and International Asthma Patient Insight Research (INSPIRE) study by Partridge et al 21 Socioeconomic status (SES) has been linked to various health outcomes, with lower SES being associated with higher rates of morbidity and mortality from several chronic diseases, chronic obstructive pulmonary disease, and diabetes. However, SES may be particularly relevant to asthma due to pathways by which it could adversely impact asthma outcomes. At the individual level (e.g., education attainment, income), asthmatics of lower SES may have higher exposures to indoor (e.g., cockroaches, tobacco smoke) and outdoor (e.g., urban pollution, allergens) and tend to use less inhaled corticosteroids, thus increasing risk for acute asthma exacerbations. Though the SES-asthma link has been established in children and in adults, less is known about associations between individual-level SES and asthma in adults.
significant correlation between FEV1 and ACT scores. This significant correlation probably was a result of the fact that the sample size was higher and it was cohort prospective study which followed up the subjects over time as contrasted to the index study which took cross sectional look at lung Function variables and ACT scores. S.P. Chalise et al. also reported significant positive correlations between C-ACT score and FEV1 at enrollment (r=0.772) (p<0.001), three months (r=0.815) (p<0.001) and at six months follow-up (r=0.908) (p<0.001).

Limitations
The drawback of this study is that it is a hospital-based study and the findings cannot be extrapolated to the general population. A community-based study would have added value to the findings. There is therefore need for a large multicenter study to assess asthma control using Asthma Control Test in our environment.

CONCLUSION
In conclusion, the present study showed that asthma is poorly controlled among 68% of the study subjects. It also showed that lung function parameters correlate poorly with Asthma Control Test (ACT) scores. These findings highlight the importance of control-based approach to management and the importance of a multi-dimensional strategy in the evaluation of persons with asthma.

ACKNOWLEDGEMENT
The author wishes to thank all the staff of the Department of Respiratory Medicine at Goa Medical College and all the participants in this study for their cooperation.

REFERENCES
10. Jumbo Johnbull, Adeniyi Bamidele Olaiya, Erhabor Gregory Efosa; Assessment of Asthma Control Using Asthma Control Test (ACT) and it Relationship with Lung Function Parameters Greener Journal of Medical Sciences 2013;3:276-282.
25. Dorinsky PM, Edwards LD, Yancey SW, and Rickard
KA. Use of changes in symptoms to predict changes in lung function in assessing the response to asthma therapy. ClinTher 2001;23:710-714.

Source of Support: Nil; Conflict of Interest: None

Submitted: 20-07-2017; Accepted: 22-08-2017; Published: 01-09-2017