The Role of Rescreening in the Quality Control Program of Cervical Smear Reporting

Sushma

ABSTRACT

Introduction: The screening of cervical smears by a cytotechnician and a pathologist is a good way of avoiding false negatives. However, even in such cases, many cases may be missed. Rescreening helps in picking up the missed cases and improve the quality of reporting. Rescreening that is usually done is a rapid one and on 10% random cases. With this background the present study aims to rescreen consecutive cervical smears which were already screened and reported, to assess the role of rescreening as a quality control measure and to evaluate the intra observer variation during rescreening.

Material and Methods: 1000 consecutive cervical smears which were already screened by a cytotechnician and reported by a pathologist were rescreened by the same cyto-pathologist. Reporting format used was The Bethesda System 2001 (TBS 2001). Quality of reporting, that is, the number of new cases identified, was assessed and intra observer variation was calculated using k value.

Results: Total number of positive cases, including atypical epithelial cells, reported initially was 20. Rescreening helped in picking up 6 new cases. The intra observer agreement was 99.4% and k value was 0.87.

Conclusion: Rescreening indeed help bettering the quality of cervical smear reporting using TBS 2001. There was good intra observer concordance.

Keywords: Rescreening, Quality Assessment, Cervical Smears, Intra Observer Variability, k Value

INTRODUCTION

Cervical smear or Papanicolaou smear reporting is a screening technique for early detection of cervical cancers. The reporting methodology used worldwide is The Bethesda System 2001 (TBS 2001) of reporting on cervical smears. Screening of smears by a cyto-technician and final reporting by a pathologist is the usual practice in most institutions and is a good way of avoiding false negatives. However, in spite of all precautions, false negatives do happen. Hence, a rescreening of smears helps in overcoming the problem of under diagnosis and in improving the quality of cervical smear reporting. In most studies done previously rescreening was either a rapid rescreening or a 10% random rapid rescreening of smears. Present study was undertaken to rescreen consecutive cervical smears which were already screened and reported, to evaluate the intra observer variation during rescreening and to assess the role of rescreening as a quality control measure.

MATERIAL AND METHODS

Present study was done in the Department of Pathology, Goverment Medical College, Trivandrum, Kerala. A total number of 1000 consecutive cervical smears stained using Papanicolaou (PAP) stain were included in the study. These were previously screened by a cyto-technician and reported by a pathologist using TBS 2001. All these smears were rescreened by the same cyto-pathologist taking a maximum of 6 minutes per smear. The history included the age group and hysterectomy status.

STAPLISHIAL ANALYSIS

Microsoft office 2007 was used for the statistical analysis. Descriptive statistics like total and mean was computed to interpret the data. Statistical method followed was calculation of k value by studying intra-observer variability.

Expected value = row total * column total/grand total of cases *100

k value = (observed value – expected value) / (100 – expected value)

RESULTS

The policy followed in our Institution comprises of an initial screening by a cyto-technician and final reporting by cyto-pathologist. Present study was taken up to identify under diagnosed cases which were missed during routine cervical screening programme. Consecutive 1000 cases were included regardless of the previous diagnosis. At the end of the study it was observed that initial reporting of these smears showed 20 positive cases. These included the atypical squamous cells, the “grey zone” and the high grade lesions including malignancies. Rescreening by the same cyto-pathologist identified 6 new cases, taking the total positive cases to 26. This was analyzed statistically for intra observer agreement and k value calculation. Intra-observer agreement was 99.4% and k value calculated was 0.87, which indicates high concordance rate [Table 1]. These values were also compared with similar studies [Table 2]. Most of the previous studies have been on random sampling. Present study, however, included consecutive cases, i.e. 100% sampling.

DISCUSSION

Cervical smears are taken to identify neoplastic lesions in the initial stages so that early diagnosis of cervical neoplasia can be made. However, due to technical and pathologic conditions in the patient, lesions are under diagnosed or missed all together. Papanicolaou stained smears are analyzed and reported according to TBS 2001 universally. TBS 2001 has incorporated these

1Assistant Professor, Department of Pathology, Government TD Medical College, Alappuzha, Kerala, India

Corresponding author: Dr Sushma, Assistant Professor, Department of Pathology, GTDMC, Alappuzha, Kerala -688005, India

How to cite this article: Sushma. The role of rescreening in the quality control program of cervical smear reporting. International Journal of Contemporary Medical Research 2017;4(2):464-466.
Findings

In the present study the initial reporting had picked up 6 cases of ASCUS, 5 cases of ASCH, and 9 cases of HSIL/SCC. At the time of rescreening, however the basic data provided was the age group and hysterectomy status, so as to categorize the cases as adequate or not according to TBS 2001. During rescreening, 6 new cases were identified and the same were reported to the treating physician. The discrepancy was at the ASC level [Table 1]. As has been observed time and again the interpretation of nuclear enlargement in the presence of inflammation can be very frustrating. [Figure 1 a, b]. So also picking up a few cells or an occasional cluster of atypical cells in a background of blood or inflammation is a difficult task [Figure 1 c, d]. Hence the period of screening for 6 minutes was used. There were 5 new cases of ASC including ASCUS and ASCH (50% and 33.33% resp.) [Table 1 and Table 2]. Only one new case of HSIL/SCC could be picked up on rescreening (16.7%) [Table 1, Table 2]. ASCUS constituted 0.9%, ASCH constituted 0.7% and HSIL/SCC constituted 1% of total cases in the present study. There was an intra-observer agreement of 99.4% and the k value calculated showed good concordance of 0.87. Intra observer variability has been mentioned as a cause of incorrect diagnosis.13,14 Findings of the present study have been compared with those of Sood et al1 and Gupta et al1 [Table-2]. However, both the described studies were rapid rescreening. Moreover, Gupta et al1 included ASCH with ASCUS as a single entity.

CONCLUSION

Hence, to conclude, 100% rescreening gives a good assessment of quality of cervical smear reporting. TBS 2001 should be strictly adhered to while reporting or rescreening. It is important to screen bloody or inflammatory smears alloting longer time period in order to pick up true positives.

ACKNOWLEDGEMENT

Dr Nirmala, Professor and Head, Dept of Obstetrics and Gynecology, Govt Medical College, Thiruvananthapuram, Dr S Sankar, Professor Dept of Pathology, Govt Medical College, Kottayam and Dr Nandakumar G, Adll Prof, Dept of Pathology, Govt Medical College, GH Campus, Thiruvananthapuram for encouraging and guiding me during this study.
Dr Karthika, Asst Prof, Dept of Community Medicine, Govt TD Medical College, Alappuzha, for helping me with the statistical analysis.

REFERENCES


Table-1: Table showing intra observer variability

<table>
<thead>
<tr>
<th>Lesions</th>
<th>Initial observation</th>
<th>Rescreening</th>
<th>Total cases (TP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCUS</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>ASC-H</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>HSIL/SCC</td>
<td>9</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>6</td>
<td>26</td>
</tr>
</tbody>
</table>

Table-2: Table showing a comparison of present study to similar studies done previously. [Gupta et al have taken ASCUS and ASCH as a single entity.]

<table>
<thead>
<tr>
<th>Lesions</th>
<th>Present study</th>
<th>Sood et.al1</th>
<th>Gupta et.al2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCUS</td>
<td>50%</td>
<td>23.5%</td>
<td>71.9%</td>
</tr>
<tr>
<td>ASCH</td>
<td>33.3%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>HSIL/SCC</td>
<td>16.7%</td>
<td>14.4%</td>
<td>2.6%</td>
</tr>
<tr>
<td></td>
<td>(12.9%+1.5%)</td>
<td>(2.4%+0.2%)</td>
<td></td>
</tr>
</tbody>
</table>

Figure-1: [a] Inflammatory smear showing a few cells with nuclear enlargement and uniformly distributed chromatin (PAP stain, 400X). [b] ASCUS-a few cells showing nuclear enlargement and mild anisokaryosis with small nucleoli in a relatively clean background (PAP stain, 400X). [c] ASCH-a few atypical cells with hyperchromatic nuclei, high N:C ratio, irregular nuclear membranes (PAP stain, 400X). [d] HSIL/SCC - Bloody smear showing a few cells with pleomorphism and hyperchromatic nuclei (PAP stain, 400X)
497.


Source of Support: Nil; Conflict of Interest: None
Submitted: 01-02-2017; Published online: 11-03-2017